Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality

نویسندگان

  • Jiaying Jin
  • Tianyu Ma
  • Yujing Zhang
  • Guohua Bai
  • Mi Yan
چکیده

The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanent magnets and hard magnetic materials

This review deals with the definition and development of hard magnetic materials with special emphasis on more recent developments in this field. After discussing the fundamental properties of all hard magnetic materials, based on the intrinsic and extrinsic properties, some remarks on the history of hard magnetic materials and permanent magnets are given. The important hard ferrites are only b...

متن کامل

Synergetic Effect of Dy2O3 and Ca Co-Dopants towards Enhanced Coercivity of Rare Earth Abundant RE-Fe-B Magnets

Low coercivity is the main disadvantage of RE-Fe-B permanent magnets containing highly abundant rare earths (RE: La, Ce) from the application point of view, even though they exhibit many cost and resource advantages. In this work, an industrial mixed rare earth alloy (RE100 = La30.6Ce50.2Pr6.4Nd12.8) with a high amount of the more abundant elements was adopted to fabricate RE-Fe-B permanent mag...

متن کامل

Rare earth elements and permanent magnets (invited)

Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high inducti...

متن کامل

Rare-earth Permanent Magnets: New Magnet Materials and Applications

The introduction of rare-earth permanent magnets based on samarium-cobalt in about 1970, and neodymium-iron-boron magnets in the mid-nineteen eighties, has ushered in a new era in hard magnetic materials. This has resulted in a dramatic improvement in permanent magnet performance, with neodymium-iron-boron (Nd2Fe14B) magnets having a magnetic energy product up to an order of magnitude greater t...

متن کامل

Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets

Fabrication of bulk nanocomposite materials, which contain a magnetically hard phase and a magnetically soft phase with desired nanoscale morphology and composition distribution has proven to be challenging. Here we demonstrate that SmCo/Fe(Co) hard/soft nanocomposite materials can be produced by distributing the soft magnetic a-Fe(Co) phase particles homogenously in a hard magnetic SmCo phase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016